Visualization of the citation impact environments of scientific journals: an online mapping exercise

Leydesdorff, Loet Visualization of the citation impact environments of scientific journals: an online mapping exercise. Journal of the American Society for Information Science and Technology, 2007, vol. 58, n. 1. [Journal article (Unpaginated)]


Download (435kB) | Preview

English abstract

Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5968 journals) and the Social Science Citation Index (1712 journals) are made accessible from the perspective of any of these journals. A vector-space model is used for normalization, and the results are brought online at as input-files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal’s citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self‑)citations. In the “citing” environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.

Item type: Journal article (Unpaginated)
Keywords: visualization, journal, citation, vector-space, Pajek, map
Subjects: B. Information use and sociology of information > BB. Bibliometric methods
Depositing user: Loet Leydesdorff
Date deposited: 05 Apr 2007
Last modified: 02 Oct 2014 12:07


"SEEK" links will first look for possible matches inside E-LIS and query Google Scholar if no results are found.

Ahlgren, P., B. Jarneving, & R. Rousseau. (2003). Requirement for a Cocitation Similarity Measure, with Special Reference to Pearson’s Correlation Coefficient. Journal of the American Society for Information Science and Technology, 54(6), 550-560.

Almind, T. C., & P. Ingwersen. (1997). Informetric Analyses of the World Wide Web: Methodological Approaches to "Webometrics". Journal of Documentation, 53(4), 404-426.

Bensman, S. J. (1996). The Structure of the Library Market for Scientific Journals: The Case of Chemistry. Library Resources & Technical Services, 40, 145-170.

Bensman, S. J. (2001). Bradford’s Law and fuzzy sets: Statistical implications for library analyses. IFLA Journal, 27, 238-246.

Bensman, S. J. (2004). Pearson’s r and Author Cocitation Analysis: A Commentary on the Controversy. Journal of the American Society for Information Science and Technology, 55(10), 935-936.

Bensman, S. J. (forthcoming). Citations as Measures of Journal Importance: Total Citations Versus Impact Factor in Chemistry. Journal of the American Society for Information Science and Technology.

Bensman, S. J., & S. J. Wilder. (1998). Scientific and Technical Serials Holdings Optimization in an Inefficient Market: A LSU Serials Redesign Project Exercise. Library Resources and Technical Services, 42(3), 147-242.

Bollen, J., H. Van den Sompel, J. A. Smith, & R. Luce. (2005). Toward Alternative Metrics of Journal Impact: A Comparison of Download and Citation Data. Information Processing and Management, 41(6), 1419-1440.

Bradford, S. C. (1934). Sources of Information on Specific Subjects. Engineering, 137(85-86).

Brewer, D. J., S. M. Gates, & C. A. Goldman. (2001). In Pursuit of Prestige: Strategy and Competition in U.S. Higher Education. Piscataway, NJ: Transaction Publishers, Rutgers University.

Callon, M., J. Law, & A. Rip (Eds.). (1986). Mapping the Dynamics of Science and Technology. London: Macmillan.

Chen, C. (2003). Mapping Scientific Frontiers: The Quest for Knowledge Visualization. London: Springer.

Collins, H. M. (1985). The Possibilities of Science Policy. Social Studies of Science, 15, 554-558.

Doreian, P. (1986). A Revised Measure of Standing of Journals in Stratified Networks,. Scientometrics 11, 63-72.

Doreian, P., & T. J. Fararo. (1985). Structural Equivalence in a Journal Network. Journal of the American Society of Information Science, 36, 28-37.

Garfield, E. (1979). Citation Indexing: Its Theory and Application in Science, Technology, and Humanities. New York: John Wiley.

Garfield, E. (Ed.). (1980). SCI journal citation reports: A bibliometric analysis of science journals in the ISI data base. Science Citation Index 1979 annual, v. 14. Philadelphia: Institute for Scientific Information.

Garfield, E. (1998). Journal Impacts as Surrogates. Paper presented at the 41st Annual Meeting of the Council of Biology Editors, May 4, Salt Lake City, UT.

Garfield, E., A. I. Pudovkin, & V. I. Istomin (2003). Mapping the Output of Topical Searches in the Web of Knowledge and the Case of Watson-Crick. Information Technology and Libraries, 22(4), 183-187.

He, C., & M. L. Pao (1986). A Discipline-Specific Journal Selection Algorithm. Information Processing & Management, 22(5), 405-416.

Hirst, G. (1978). Discipline Impact Factors: A Method for Determining Core Journal Lists. Journal of the American Society for Information Science, 29, 171-172.

Jones, W. P., & G. W. Furnas. (1987). Pictures of Relevance: A Geometric Analysis of Similarity Measures. Journal of the American Society for Information Science, 36(6), 420-442.

Kostoff, R. (2004). The (Scientific) Wealth of Nations. The Scientist, 18(18), 10.

Leydesdorff, L. (1986). The Development of Frames of References, Scientometrics 9, 103-125.

Leydesdorff, L. (1987). Various Methods for the Mapping of Science. Scientometrics, 11, 291-320.

Leydesdorff, L. (1991). The Static and Dynamic Analysis of Network Data Using Information Theory. Social Networks, 13, 301-345.

Leydesdorff, L. (1995). The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications. Leiden: DSWO Press, Leiden University; at

Leydesdorff, L. (1998). Theories of Citation? Scientometrics, 43(1), 5-25.

Leydesdorff, L. (2002). Indicators of Structural Change in the Dynamics of Science: Entropy Statistics of the Sci Journal Citation Reports. Scientometrics, 53(1), 131-159.

Leydesdorff, L. (2003). Can Networks of Journal-Journal Citations Be Used as Indicators of Change in the Social Sciences? Journal of Documentation, 59(1), 84-104.

Leydesdorff, L. (2004a). Clusters and Maps of Science Journals Based on Bi-Connected Graphs in the Journal Citation Reports. Journal of Documentation, 60(4), 371-427.

Leydesdorff, L. (2004b). Top-Down Decomposition of the Journal Citation Report of the Social Science Citation Index: Graph- and Factor-Analytical Approaches. Scientometrics, 60(2), 159-180.

Leydesdorff, L. (forthcoming). Can Scientific Journals Be Classified in Terms of Aggregated Journal-Journal Citation Relations Using the Journal Citation Reports? Journal of the American Society for Information Science & Technology, In print.

Leydesdorff, L., & P. van der Schaar. (1987). The Use of Scientometric Indicators for Evaluating National Research Programmes. Science & Technology Studies, 5, 22-31.

Leydesdorff, L., & S. E. Cozzens. (1993). The Delineation of Specialties in Terms of Journals Using the Dynamic Journal Set of the Science Citation Index. Scientometrics, 26, 133-154.

Leydesdorff, L., & S. J. Bensman. (forthcoming). Citations, Powerlaws, and Logarithmic Transformations, Journal of the American Society for Information Science and Technology (in press).

Leydesdorff, L., S. E. Cozzens, & P. van den Besselaar. (1994). Tracking Areas of Strategic Importance Using Scientometric Journal Mappings. Research Policy, 23, 217-229.

Leydesdorff, L., & B. Jin. (2005). Mapping the Chinese Science Citation Database in Terms of Aggregated Journal-Journal Citation Relations. Journal of the American Society for Information Science and Technology, 56(14), 1469-1479.

Leydesdorff, L., & L. Vaughan. (forthcoming). Co-occurrence Matrices and Their Applications in Information Science: Extending ACA to the Web Environment. Journal of the American Society for Information Science and Technology, In print.

Martin, B. R., & J. Irvine. (1985). Evaluating the Evaluators. Social Studies of Science, 15, 558-585.

McKain, K. M. (1991). Core Journal Networks and Cocitation Maps: New bibliometric tools for serials research and management. Library Quarterly, 61(3), 311-366.

Moed, H. F. (2005). Citation Analysis in Research Evaluation. Dordrecht: Springer.

Narin, F., M. Carpenter, & N. C. Berlt. (1972). Interrelationships of Scientific Journals. Journal of the American Society for Information Science, 23, 323-331.

Nederhof, A. J., R. A. Zwaan, R. E. Bruin, & P. J. Dekker. (1989). Assessing the Usefulness of Bibliometric Indicators for the Humanities and the Social Sciences: A Comparative Study. Scientometrics, 15, 423-436.

Noma, E. (1982). An Improved Method for Analyzing Square Scientometric Transaction Matrices. Scientometrics, 4, 297-316.

Otte, E., & R. Rousseau. (2002). Social Network Analysis: A Powerful Strategy, Also for the Information Sciences. Journal of Information Science, 28(6), 443-455.

Pinski, G., & F. Narin. (1976). Citation Influence for Journal Aggregates of Scientific Publications: Theory, with Application to the Literature of Physics. Information Processing and Management, 12(5), 297-312.

President’s Council of Advisors on Science and Technology, 2005. The National Nanotechnology Initiative at Five Years: Assessment and Recommendations of the National Nanotechnology Advisory Panel. Washington, D. C. Available at:

Price, D. de Solla (1951). Quantitative Measures of the Development of Science. Archives internationales d'histoire des sciences, 14, 85-93.

Price, D. de Solla (1961). Science since Babylon. New Haven: Yale University Press.

Price, D. J. de Solla (1965). Networks of Scientific Papers. Science, 149, 510- 515.

Price, D. de Solla (1970). Citation Measures of Hard Science, Soft Science, Technology, and Nonscience. In C. E. Nelson & D. K. Pollock (Eds.), Communication among Scientists and Engineers (pp. 3-22). Lexington, MA: Heath.

Price, D. de Solla (1978). Toward a Model of Science Indicators. In Y. Elkana, J. Lederberg, R. K. Merton, A. Thackray & H. Zuckerman (Eds.), The Advent of Science Indicators. New York, etc.: Wiley.

Price, D. J. de Solla (1981). The Analysis of Square Matrices of Scientometric Transactions. Scientometrics, 3, 55-63.

Pudovkin, A. I., & E. Garfield. (2002). Algorithmic Procedure for Finding Semantically Related Journals. Journal of the American Society for Information Science and Technology, 53(13), 1113-1119.

Rip, A. (1997). Qualitative Conditions for Scientometrics: The New Challenges,. Scientometrics 38(1), 7-26.

Salton, G., & M. J. McGill. (1983). Introduction to Modern Information Retrieval. Auckland, etc.: McGraw-Hill.

Seglen, P. O. (1997). Why the Impact Factor of Journals Should Not Be Used for Evaluating Research. British Medical Journal, 314, 498-502.

Servi, P. N., & B. C. Griffith (1980). A Method for Partitioning the Journal Literature. Journal of the American Society for Information Science, 31, 36-40.

Shriffin, R. M., & K. Börner (Eds.), (2004). Mapping Knowledge Domains. Proceedings of the National Academy of the United States of America, 101 (Suppl. 1, April 6), 5183-5310.

Simon, H. A. (1973). The Organization of Complex Systems. In H. H. Pattee (Ed.), Hierarchy Theory: The Challenge of Complex Systems (pp. 1-27). New York: George Braziller Inc.

Small, H. (1999). Visualizing Science by Citation Mapping. Journal of the American Society for Information Science, 50(9), 799-813.

Studer, K. E., & D. E. Chubin. (1980). The Cancer Mission. Social Contexts of Biomedical Research. Beverly Hills, etc.: Sage.

Tijssen, R., J. de Leeuw, & A. F. J. van Raan. (1987). Quasi-Correspondence Analysis on Square Scientometric Transaction Matrices. Scientometrics 11, 347-361.

Van den Besselaar, P., & L. Leydesdorff. (1996). Mapping Change in Scientific Specialties: A Scientometric Reconstruction of the Development of Artificial Intelligence. Journal of the American Society for Information Science, 47, 415-436.

Van den Daele, W., W. Krohn, & P. Weingart (Eds.). (1979). Geplante Forschung: Vergleichende Studien über den Einfluss politischer Programme auf die Wissenschaftsentwicklung. Frankfurt a.M.: Suhrkamp.

Van der Meulen, B., & L. Leydesdorff. (1991). Has the Study of Philosophy at Dutch Universities Changed under Economic and Political Pressures? Science, Technology and Human Values, 16, 288-321.

Van Gigch, J. P. (2002a). Comparing the Epistemologies of Scientific Disciplines in Two Distinct Domains: Modern Physics Vs Social Sciences I. The Epistemology and Knowledge Characteristics of the Physical Sciences. Systems Research and Behavioral Science, 19, 199-209.

Van Gigch, J. P. (2002b). Comparing the Epistemologies of Scientific Disciplines in Two Distinct Domains: Modern Physics Vs Social Sciences I. The Epistemology and Knowledge Characteristics of the "New" Social Sciences. Systems Research and Behavioral Science, 19, 552-562.

Whitley, R. D. (1984). The Intellectual and Social Organization of the Sciences. Oxford: Oxford University Press.

Zhou, P., & L. Leydesdorff (2005). Visualization of the Citation Environments of Chinese Scientific and Technological Journals. Chinese Journal of Scientific and Technical Periodicals, 16(6), 773-780.

Zhou, P. & L. Leydesdorff (2006). The emergence of China as a leading nation in science, Research Policy, (forthcoming).


Downloads per month over past year

Actions (login required)

View Item View Item