Big data y analítica web. Estudiar las corrientes y pescar en un océano de datos

Serrano-Cobos, Jorge Big data y analítica web. Estudiar las corrientes y pescar en un océano de datos. El profesional de la información, 2014, vol. 23, n. 6, pp. 561-565. [Journal article (Paginated)]

[thumbnail of 01.pdf] Text
01.pdf - Published version
Available under License Creative Commons Attribution.

Download (3MB)

English abstract

A tour is provided of the features, possibilities, scientific, technical and technologies that are collected under the interdisciplinary umbrella of big data and web analytics from the point of view of its application in practice. A reflection is offered about the challenges, risks and problems that the tools and data cannot resolve on their own, as well as the contexts in which these data processing techniques are useful for decision making.

Spanish abstract

Se realiza un recorrido por las características, posibilidades, disciplinas científicas, técnicas y tecnologías que se recogen dentro del paraguas interdisciplinar del big data y la analítica web desde el punto de vista de su aplicación a la praxis. Se realiza una reflexión en torno a los retos, riesgos y problemas que las herramientas y los datos no resuelven por sí solos, así como sobre los contextos de uso de estas técnicas de tratamiento de datos para la toma de decisiones.

Item type: Journal article (Paginated)
Keywords: Big data, Analítica web, Analítica predictiva, Analista, Data mining, Text mining, Análisis, Cibermetría, Marketing, Usuarios, Estadística, Aprendizaje, Informe de situación, Web analytics, Predictive analytics, Analyst, Analysis, Data mining, Text mining, Cybermetrics, Marketing, Users, Statistics, Machine learning, Situation report
Subjects: B. Information use and sociology of information
F. Management. > FB. Marketing.
I. Information treatment for information services > IE. Data and metadata structures.
I. Information treatment for information services > IM. Open data
L. Information technology and library technology
Depositing user: Carlota CS Serrano
Date deposited: 09 May 2016 12:12
Last modified: 09 May 2016 12:12
URI: http://hdl.handle.net/10760/29262

References

Barranco-Fragoso, Ricardo (2012). ¿Qué es big data? IBM.

http://www.ibm.com/developerworks/ssa/local/im/que-esbig-data

Berger, Charlie (2012). Big data analytics with Oracle advanced analytics in-database option.

http://www.oracle.com/technetwork/database/options/advanced-analytics/bigdataoracleadvanalytics- 11gr2-1930894.pdf

Data Mining Group. The Data Mining Group releases PMML v 4.2. http://www.dmg.org/DMGReleasesPMMLv4.2.pdf

Garrett, Wu (2013). “Why more data and simple algorithms beat complex analytics models”. DataInformed. Big data and analytics in the enterprise.

http://data-informed.com/why-more-data-and-simple-algorithms-beat-complex-analytics-models

Google. About the attribution models.

https://support.google.com/analytics/answer/1665189

Google. Engagement.

https://support.google.com/analytics/answer/1144430?hl=en

MuleSoft. The top 10 internet of things APIs.

http://www.mulesoft.com/infographics/api/internet-things

Winshuttle (2014). Big data y la historia del almacenamiento de la información.

http://www.winshuttle.es/big-data-historia-cronologica


Downloads

Downloads per month over past year

Actions (login required)

View Item View Item