Non Linear Behaviour in Learning Processes

Manfredi, Paolo and Manfredi, Vicenzo Rosario Non Linear Behaviour in Learning Processes., 2003 [Preprint]

[thumbnail of manfredii2.pdf]
Preview
PDF
manfredii2.pdf

Download (305kB) | Preview

English abstract

This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativity is linked to a search in a space of hypotheses and a space of experiments. This "Dual Search" involves the formation of new hypotheses and new experiments which are then linked by a comparison of the prediciton derived from a hypothesis with the results obtained from the experiment. Enclosed: Appendix 1 Chaotic Phenomena, Appendix 2 The Logistic Map Appendix 3 Lorenz Model

Item type: Preprint
Keywords: Non Linear Dynamics in Human Behavior, Learning process, Chaotic Phenomena, creative mind, Chaos Theory in Learning, Lorenz Model
Subjects: A. Theoretical and general aspects of libraries and information.
G. Industry, profession and education.
Depositing user: Antonella De Robbio
Date deposited: 20 Mar 2003
Last modified: 02 Oct 2014 11:57
URI: http://hdl.handle.net/10760/4071

References

[1] R. E. Kahn in Non Linear Dynamics in Human Behaviour, World Scientific Publishing Co (1996). [2] J. Bronowski in Scientific Genius and Creativity (W. H. Freeman, New York, 1982) [3] R. S. Root-Bernstein, Discovering (Harvard University Press, Cambridge, 1989) [4] D. Klahr and Dunbar, Cog. Science, 12, 1 (1988). [5] K. Dunbar, Cog. Science, 17, 397 (1993). [6] J. J. Jenkins in Abilities, Motivation and Methodology: The Minnesota Symposium on Learning and Individual Differences, ed. R. Kaufer, P. L. Ackerman and R. Cudeck (Erlbaum, Hillsdale (1989)). [7] J. Lave and E. Wenger, Situated Learning: Legitimate Peripheral Partecipation (Cambridge University Press, Cambridge and New York, 1991). [8] T. Mullin, ed. , The Nature of Chaos (Oxford University Press, Oxford, 1993). [9] C. A. Skarda and W. J. Freeman, Behavioural and Brain Science, 10, 161 (1987). [10] C. D. Ennis, J. of Curriculum and Supervision, 7, 115 (1992). [11] W. E. Doll. Jr. , A Post-Modern Perspectives on Curriculum (Teachers College Press, New York and London, 1993). [12] G. A. Cziko, Ed. Researcher 18, 17 (1989). [13] R. Domaingue, New Orizons in Adult Education 2, 55 (1988), Eric Document ED 330780. [14] D. Hesse, Strange Attractors: Chaos Theory and Composition Studies, Eric Document 342010. [15] R. R. Vallacher and A. Nowak, eds. , Dynamical Systems in Social Psychology (Academic Press, San Diego, 1994). [16] E. N. Lorenz, J. of the Atmos Sciences, 20, 130, (1963). [17] G. L. Baker and J. P. Gollub, Chaotic Dynamics: An Introduction (Cambridge University Press, Cambridge and New York, 1990). [18] L. Leslie and J. Caldwell, Qualitative Reading Inventory (Harpen Collins, New York, 1990). [19] J. R. Eiser, Attitudes, Chaos and the Connectionist Mind (Blackwell, Oxford and Cambridge, MA, 1994). [20] I. R. Eiser in Dynamical Systems in Social Psychology, ed. R. R. Vallacher and A. Nowak (Academic Press, San Diego, 1994) [21] D. J. Pittenger, Rev. of Ed. Research, 63, 467 (1993). [22] D. K. Campbell in From Cardinal to Chaos: Reflection on the Life and Legacy of Stanishaw Ulam, ed. N. G. Cooper (Cambridge University Press, Cambridge and New York, 1989). [23] R. D. Anderson, J. of Research in Science Teachnig, 29, 861 (1992). [1] D. D’Humières, M. R. Beasly, B. A. Humberman and A. Libchaber, "Chaotic States and Routes to Chaos in the Forced Pendulum", Phys. Rev. 26 A (1982) 3483. [2] A. Libchaber and J. Maurer in T. Riste (ed. ): Nonlinear Phenomena at Phase Transitions and Instabilities. NATO Adv. Study Inst., Plenum Press, New York 1982. [3] H. Haken, "Analogy between Higher Instabilities in Fluids and Lasers", Phys. Lett. 53A (1975) 77. [4] F. A. Hopf, D. L. Kaplan, H. M. Gibbs and R. L. Shoemaker, "Bifurcations to Chaos in Optical Bistability", Phys. Rev. 25A (1982) 2172. [5] M. Cirillo and N. F. Pedersen, "On Bifurcations and Transitions to Chaos in a Josephson Junctions", Phys. Lett. 90A (1982) 150 [6] R. H. Simoyi, A. Wolf and H. L. Swinney: "One Dimensional Dynamics in a Multicomponent Chemical Reaction", Phys. Rev. Lett. 49 (1982) 245. [7] R. H. G. Hellemann, in E. G. D. Cohen (ed): Fundamental Problems in Statistical Mechanics. Vol. V, North-Holland, Amsterdam, New York (1980). [8] R. H. G. Helleman, "Proc. of the 1979 Int. Conf. On Nonlinear Dynamics", Ann. N. Y. Acad. Sci, 603 (1980). [9] J. M. Wersinger, J. M. Finn and E. Ott in G. Laval and D. Gresillon (eds. ): Intrinsic Stochasticity in Plasmas. Les Editions de Physique, Courtaboeuf, Orsay, France 1980. [11] L. Glass, M. R. Guevara and A. Shrier, "Bifurcation and Chaos in a periodically Stimulated Cardiac Oscillator", Physica 7D (1983) 89, and A. T. Winfree, Sci. Am. 248, N. 5 (1983). [1] H. O. Peitgen and P. H. Richter: Harmonic in Chaos und Kosmos, and Morphologie Komplexer Grenzen; Bilder aus der Theory Dynamischer Systeme (1984). [2] S. Grossman and S. Thomae: Z. Naturforsch 32A, 1353 (1977). [3] M. J. Feigenbaum: J. Stat. Phys. 19, 25 (1978). [4] P. Coullet and J. Tresser: J. Phys. (Paris), C5, 25 (1978) [5] R. M. May: Nature 261, 459 (1976). [1] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963). [2] B. Saltzman, J. Atmos. Sci. , 19, 329 (1962).

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item